Key Concepts and Skills

- Know how to calculate expected returns
- Understand the impact of diversification
- Understand the systematic risk principle
- Understand the security market line
- Understand the risk-return trade-off

Expected Returns

- Expected returns are based on the probabilities of possible outcomes
- In this context, "expected" means "average" if the process is repeated many times
- The "expected" return does not even have to be a possible return

$$
E(R) \square \sum_{i \square 1}^{n} p_{i} R_{i}
$$

Example: Expected Returns

- Suppose you have predicted the following returns for stocks C and T in three possible states of nature. What are the expected returns?

- State	Probability	C	T
- Boom	0.3	0.15	0.25
- Normal	0.5	0.10	0.20
- Recession	$? ? ?$	0.02	0.01

- $\mathrm{R}_{\mathrm{C}}=.3(.15)+.5(.10)+.2(.02)=.099=9.9 \%$
- $\mathrm{R}_{\mathrm{T}}=.3(.25)+.5(.20)+.2(.01)=.177=17.7 \%$

Portfolios

- A portfolio is a collection of assets
- An asset's risk and return are important to how the stock affects the risk and return of the portfolio
- The risk-return trade-off for a portfolio is measured by the portfolio expected return and standard deviation, just as with individual assets

Example: Portfolio Weights

- Suppose you have $\$ 15,000$ to invest and you have purchased securities in the following amounts. What are your portfolio weights in each security?
- \$2,000 of DCLK
-DCLK: 2/15 = . 133
- \$3,000 of KO
- \$4,000 of INTC
- \$6,000 of KEl
-KO: 3/15 = . 2
-INTC: 4/15 = . 267
-KEI: 6/15 = . 4

Portfolio Expected Returns

- The expected return of a portfolio is the weighted average of the expected returns of the respective assets in the portfolio

$$
E\left(R_{P}\right) \square \sum_{j \square 1}^{m} w_{j} E\left(R_{j}\right)
$$

- You can also find the expected return by finding the portfolio return in each possible state and computing the expected value as we did with individual securities

Example: Expected Portfolio

Returns

- Consider the portfolio weights computed previously. If the individual stocks have the following expected returns, what is the expected return for the portfolio?
-DCLK: 19.65\%
-KO: 8.96\%
-INTC: 9.67\%
-KEI: 8.13\%
- $E\left(R_{P}\right)=.133(19.65)+.2(8.96)+$ $.267(9.67)+.4(8.13)=10.24 \%$

Expected versus Unexpected Returns

- Realized returns are generally not equal to expected returns
- There is the expected component and the unexpected component
- At any point in time, the unexpected return can be either positive or negative
- Over time, the average of the unexpected component is zero

Announcements and News

- Announcements and news contain both an expected component and a surprise component
- It is the surprise component that affects a stock's price and therefore its return
- This is very obvious when we watch how stock prices move when an unexpected announcement is made, or earnings are different from anticipated

Efficient Markets

- Efficient markets are a result of investors trading on the unexpected portion of announcements
- The easier it is to trade on surprises, the more efficient markets should be
- Efficient markets involve random price changes because we cannot predict surprises

Systematic Risk

- Risk factors that affect a large number of assets
- Also known as non-diversifiable risk or market risk
- Includes such things as changes in GDP, inflation, interest rates, etc.

Unsystematic Risk

- Risk factors that affect a limited number of assets
- Also known as unique risk and assetspecific risk
- Includes such things as labor strikes, part shortages, etc.

Returns

- Total Return = expected return + unexpected return
- Unexpected return = systematic portion
+ unsystematic portion
- Therefore, total return can be expressed as follows:
- Total Return = expected return + systematic portion + unsystematic portion

Diversification

- Portfolio diversification is the investment in several different asset classes or sectors
- Diversification is not just holding a lot of assets
- For example, if you own 50 Internet stocks, then you are not diversified
- However, if you own 50 stocks that span 20 different industries, then you are diversified

Table 11.7

(1)	(2) Number of Stocks in Portfolio	Average Standard Deviation of Annual Portfolio Returns
1	49.24%	Ratio of Portfolio Standard Deviation to Standard Deviation of a Single Stock
2	37.36	1.00
4	29.69	.76
6	26.64	.60
8	24.98	.54
10	23.93	.51
20	21.68	.49
30	20.87	.44
40	20.46	.42
50	20.20	.42
100	19.69	.41
200	19.42	.40
300	19.34	.39
400	19.29	.39
500	19.27	.39
1,000	19.21	.39

These figures are from Table 1 in Meir Statman, How Many Stocks Make a Diversified Portfolio? Journal of Financia and Quantitative Analysis 22 (September 1987), pp. 353-64.They were derived from E. J. Elton and M. J. Grube Risk Reduction and Portfolio Size: An Analytic Solution, Journal of Business 50 (October 1977), pp. 415-37.

